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Abstract
Conventional methods of slope stability provides a constant value of safety factor 

for the slope, providing no information of slope displacements and possible variations 
of safety margins along the potential failure surface. To overcome this drawback, an 
innovative approach is proposed here, which takes into account all limit equilibrium 
requirements originally adopted in the conventional slope stability analyses, with a 
displacement compatibility function and a hyperbolic shear stress-displacement soil 
model. The new method provides incremental slope displacements induced by internal 
or external stress (or safety status) variations. A case study on a well-monitored slope 
during a rainstorm showed that the measured slope displacement caused by an elevated 
groundwater table can be simulated using the proposed method along with hyperbolic 
soil parameters obtained in large-scale direct shear tests. The proposed method 
substantially strengthened the weakness associated with conventional slice methods, 
providing useful information of slope displacement induced by the elevated groundwater 
table.

Keywords: Slope failure; Slope displacement; Stability analysis; Disaster mitigation; Force 
equilibrium.

Introduction
The slice method of slope stability was pioneered by Fellenius in 1920’s [1]. The 

original Fellenius’ method and the following updates constitute a major contribution to 
the practice and development of geotechnical engineering [2-6]. It is a well-known fact 
that the sliced potential failure mass is a statically indeterminate system [7,8]. Table 1 
summarizes unknowns and equations for a potential failure surface with a total of ns 
slices. Figure 1 schematically shows the force acting on a potential failure mass with ns 
vertical slices, in which, Wi , Ni and Si represent the self-weight, the normal force at the 
base, and the shear force at the base, of slice i, respectively. Fellenius [1] proposed a 
simplified scheme of slice method using a circular failure mechanism, as shown in figure 
2. In this simplified scheme, only a part of criteria listed in table 1 was used, yet a static 
determinate system with a straightforward expression of safety factor (Fs) can be 
obtained as:

( )[ ]
( )∑

∑
⋅

⋅−⋅+
=

ii

iiii
s W

UWC
F

α
φα

sin
tancos

 
  (1)

iiBciciC αsec⋅⋅=⋅=     (2)

iiiiii BuuU αsec⋅⋅=⋅=     (3)

Where, 

i: slice number (i=1, 2, …, ns)

Wi: self-weight of slice i
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αi: inclination angle of slice base i

c: cohsion intercept of soil

φ: internal friction angle of soil

ui: porewater pressure acting at slice base i

i , Bi: the length of base and the width, respectively, for slice i. 

Table 1. Static Indetermination of stability analyses  
using slice methods.

Unknowns Number Equations Number

iN ′ ns Σ FH=0 ns

Si ns Σ FV=0 ns
Ei ns-1 Σ MO=0 ns
Xi ns-1 hi=λ⋅ Hi ns-2*
Hi ns-1

bi ns 2
i

i
B

b = ns

Fs 1
s

ii
i F

NCS φtan′+
= ns

6⋅ns-2 6⋅ns-2
*λ is an unknown. Alternatively, a total number of n-2 equations can 
be provided via assuming ii Hh

3
1

=

 
for slices 1, ---, ns-2.
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Figure 1. Forces acting on a sliced slope with a circular failure 
surface.

Figure 2. Hyperbolic model of shear displacement vs. shear stress 
for soils.

The static determinate conditions for the Fellenius′ slice 
method is summarized in table 2. Note that the force 
equilibrium in the direction normal to the slice base (Σ FN=0) 
does not take into account the influence of inter-slice forces. 
This method is based on an implicit assumption that the 
resultant inter-slice force acts parallel to the slice base, as 
pointed out by Whitman and Bailey [7].

Table 2. Static determination of Fellenius′ method.
Unknowns Number Equations Number

Ni ns Σ FN=0 (Force equilibrium in the direction 
normal to the slice base) ns

Si ns Σ Mo=0 1

Fs 1
s

ii
i F

NCS φtan′+
= ns

2⋅ns+1 2⋅ns+1

Derivation of Displacement-Based 
Fellenius′ Method

In the following, local force-based safety factors (FSi) and 
a hyperbolic stress-displacement model will be incorporated 
in the Fellenius′ method. According to Σ FN=0, the effective 
normal force iN ′  can be expressed as:

iiii UWN −⋅=′ αcos  ---------- (4)

According to Mohr-Coulombs′ failure criterion and the 
definition of local stress-based safety factor FSi:

τ ϕ
τ

′+ ⋅
= = =

tanfi fi i i
i

i i i

S C NFS
S S  ---------- (5)

τ ϕ′= ⋅ = + ⋅ tanfi fi i i iS C N  ---------- (6)

τ= ⋅ i i iS  ---------- (7)

where, 

τfi , τi : ultimate shear strength, and shear stress, respectively, 
for slice i.

Sfi, Si: ultimate shear resistance and shear force, respectively, 
for slice i

FSi: local force-based safety factor

As shown in figure 2, where the shear stress (τi) vs. shear 
displacement (∆i) relationship is represented by a hyperbolic 
curve, expressed as [18]:

i

i
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=τ  ---------- (8)
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where,

kinitial: initial shear stiffness
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K, n: material constants

Rf: failure ratio

inσ ′ : normal stress acting at the base of slice i

Pa: atmospheric pressure

Normalizing Eq. (8) using τfi:

i

i

if

i
ba ∆⋅+
∆

=
τ
τ

---------- (13)
τ

τ′= ⋅ = fi
fi

initial

a a
k

---------- (14)

τ′= ⋅ =fi fb b R ---------- (15)

Based on the definitions of local safety factors in Eqs. (5), Eq. 
(13) can be re-written as:

+ ⋅ ∆
=

∆
i

i
i

a bFS ---------- (16)

Introducing a displacement diagram [9] that satisfy 
displacement compatibility as schematically shown in figures 
3a and 3b:
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−

⋅∆=∆ ---------- (17)

where,

ψ: agle of dilatancy

The displacement of slice i can be related to the vertical 
displacement at the top of slice No. 1 (∆o) using the following 
equation:
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Equation (18) can be expressed as:

( )ioi f α⋅∆=∆ ---------- (19)
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Substitute Eq. (20) into Eq. (16),
( )
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α
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a b f
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Based on the principle of moment equilibrium at the center of 
circle, i.e.,ΣMo=0:
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i i i i i
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Rewriting Eq. (22):

( )∑ ∑ ⋅=
⋅′+

ii
i

i W
FS
NC

α
φ

sin
tan ---------- (23)

Substitute Eqs. (4) and (21) into Eq. (23), and re-arrange to 
solve for Δo:
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It can be seen that Eq. (24) is basically an inverted 
expression of Eq. (1), with additional displacement-related 
known parameters ‘a’,‘b’,‘ ( )if α ’, and an unknown ‘Δo’. The 
static determinate condition for the extended Fellenius′ 
method discussed above is summarized in table 3. It can be 

confirmed that the extended method is also a static 
determinate system. It is noted that the unknown ‘Δo’ appears 
at both sides of the equation, indicating that an iterative 
procedure is required in calculating values of ‘Δo’. This 
situation is similar to that used in the calculatiion using the 
simplified Bishop′s method [2,19,20] which also required an 
iterative calculation for the safety factor of the slope. A 
convergence criterion of ε=1% is used here to detect the 
convergence of Δ0 :

( ) ( )
( ) ε≤
∆

∆−∆

newo

oldonewo   (25)

Table 3. Static determination for the proposed displacement-based 
Fellenius’ method.

Unknowns Number Equitions Number

iN ′ ns Σ FN=0; Eq. (4) ns
Si ns Σ Mo=0; Eq. (22) 1

FSi ns
Mohr-Coulomb′s failure criterion and 
definition of FSi

ϕ′+
=

tan ;  Eq. (5)i i
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Figure 3. Displacement compatibility of adjacent slices: (a) vectors 
of shear displacement; (b) displacement diagram.

Local Displacement-Based Safety 
Factors
The displacement at failure (∆f) can be obtained by using 
FSi=1.0 in Eq. (16):

+ ⋅ ∆
= =

∆
1.0 f

i
f

a b
FS   (26)

Re-arrange the above equation to obtain ∆f:

b
a

f −
=∆

1
  (27)

A displacement-based safety factor, FDi can be defined as:
∆

=
∆

f
i

i

FD
 
  (28)

Substituting Eqs. (19), (27) into Eq. (28):
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=

∆ ⋅ ⋅ −1i
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f b   (29)
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Analytical Procedure in Computer 
Program

A computer program in Visual Basic 2010 (Microsoft, 
2010) was coded based on the following algorithm:

1.	 Input analytical parameters, including slope profile, 
circular arc failure surface (rotation center, 
coordinates, and radius), and displacement-related 
parameters, K, n, and Rf.

2.	 Perform a conventional slope stability analysis using 
Eq. (1) to derive a constant value of Fs.

3.	 Calculate preliminary values of iN ′  using Eqs. (4), or 
calculate inσ ′  using Eq. (12), by assuming FSi=Fs. 

4.	 Calculate preliminary values of ‘a’, ‘b’, and f(αi) using 
Eqs. (14), (15) and (20), respectively.

5.	 Calculate preliminary value of ‘∆o’ using Eq. (24).
6.	 Calculate preliminary values of FSi (i=1,---, ns) using 

Eq. (21).
7.	 Calculate improved values of iN ′  and ‘a’ using Eqs. 

(4), and (14), respectively. 
8.	 Calculate improved value of ‘∆o’ using Eq. (24).
9.	 Check the convergence of ‘∆o’ using Eq. (25). If not 

satisfied, repeated from step (6).
10.	 Calculate final values of FSi and FDi using Eqs. (21) 

and (28), respectively.
11.	 Calculate final values of ∆i using Eq. (19).
12.	 Calculate final values of internal stresses inσ ′  and τi, 

using Eqs. (12) and (8), respectively.

Increments of Slope Displacement
In calculating slope displacements induced by external 

and internal condition changes (e.g., loading, water table, and 
porewater pressure variations), two values of ∆i(or ∆0), namely, 
a slope displacement prior to the event ( )a

i∆  and that after 
the event ( )b

i∆  should be calculated, and the increment of 
displacement for slice i, occurs in that event is schematically 
shown in figure 4, and is defined as:

a
i

b
ii ∆−∆=∆   (30)

∆

τ

•
•

∆i
b∆i

a

Rainfall-induced stress path

For higher σn

For lower σn

Figure 4. Shear stress and displacement paths induced by a 
reduction of normal stress.

Case Study and Discussions
The studied slope locates in south-west foothill area of 

Taiwan. The slope is a part of highway No.18 which winds 
through a chronic landslide area. The landslide caused property 
losses and traffic problems in rainfall seasons, and therefore, was 
well monitored and studied [10]. Figure 5 shows the studied 
slope with points of inclinometer measurements and possible 
locations of slip surface [11]. The observed slip surface is 
simulated using seven segments of straight lines which are also 
shown in the figure. Underground water table observations were 
conducted in a borehole adjacent to the slope during the rain 
strom, and the recorded water table height is also shown in 
figure 5. The slope displacement during typhoon Herb in 1995 
using the data of inclinometer measurements is 30 mm in the 
downward direction. Site exploration has shown that the slope 
mass consisted of colluviums, and the fragments of rock 
frequently showed high blow counts (N-value) of standard 
penetration tests. The N-value for the matrix material on-site 
was about 10. Probable values of φ in the range of 25°-30° are 
estimated for the focused slope. The cohesion intercept (c) for 
the slope mass has been back-calculated, and a probable range 
of c=30-40 kPa has been reported for the studied slope by ERRL 
[11]. Figure 6 shows the changes of conventional safety factors 
(Fs) for the studied slope due to the elevated groundwater table. 
For a range of internal friction angle (ϕ) ranging between 25° 
and 30°, and a range of cohesion intercept (c) ranging between 
30 and 40 kPa, a reductions of Fs due to groundwater table rising 
for about 0.05-0.06 was obtained. Note that conventional slope 
stability analyses cannot provide information beyond this point 
and a reduction of Fs for 0.05-0.06 usually provides limited 
knowledge on the influence of groundwater table (or the effect 
of rainfall) to the performance of the slope. Figure 7 shows a 
typical example of shear stress-displacement relationships 
obtained in a large-scale direct shear test on a rooted undisturbed 
soil in south-west foothills of Taiwan [12]. The stress-displacement 
relationships are simulated using the hyperbolic model described 
previously. To account for the effect of confining stress on the 
shear strength increase of soils, the tensile forces of plant roots 
was treated as an increase of confining pressure, based on a 
verified theory of soil reinforcement [13]. Although a large-scale 
direct shear test was not performed for the studied slope, the 
well-simulated stress-displacement curves shown in figure 7 
generally suggest the applicability of the hyperbolic shear stress-
displacement relationships to be used here. A more accurate 
analysis can be pursed in the future based on site-specific direct 
shear test results.

Figure 5. Cross section of the studied slope.
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Figure 6. Conventional safety factors for pre- and post-rainfall 
conditions calculated using Fellenius’ method.

Figure 7. Typical examples of stress-displacement relationships 
obtained in large-scale direct shear tests reported by Fan and Chen 

[12].

Figure 8a shows analytical values of horizontal 
displacements for at x=800 m where the inclinometer was 
installed. Three groups of curves are characterized by their Rf 
values, i.e., curves with higher Rf have larger curvatures. It is 
noted that the curve with Rf=0.9 is practically significant, in the 
sense that this measured displacement (δh=30 mm) can be 
simulated using specific values of ϕ between 25° and 30°. Also 
noted that these values of K, n, and Rf are similar to those 
shown in figure 7. The result of a special case of the nonlinear 
hyperbolic stress-displacement relationship, namely, a linearly 
elastic stress-displacement relationship (by using Rf=0 in Eq. 
10), is shown in figure 8b. This plot shows that horizontal 
displacements calculated using the linearly elastic-plastic 
stress-displacement model with similar values of K, n, c, and ϕ 
are two to three orders different from those shown in figure 8a. 
This suggests that calculations of slope displacement using a 

simplified linearly elastic-plastic model is less realistic in this 
case, and should be used with caution. Figure 9a shows 
comparisons between local stress-and displacement-based 
safety factors (FSi and FDi) for the case of c=30 kPa, ϕ=25°, 
K=90, n=0.2, Rf=0.9. Based on the conventional constant-safety 
factor concept, values of Fs using Eq. (1) for the slope under 
pre- and post-rainfall conditions, are 1.04 and 1.08, respectively. 
Distributions of FSi and FDi for the pre-rainfall case reveal that 
a major portion of the potential failure surface are associated 
with FSi>1 (or FDi>1). Only small portions of potential sliding 
mass (close to the toe and the crest of potential failure mass) 
were associated with FSi<1.0 (or FDi<1.0) conditions. For the 
case of post-rainfall, the slope experienced substantial drops of 
FSi and FDi, along a major portion of the failure surface. It can 
be seen that a part of the slices experience FSi=1.0, indicating 
that ultimate failure conditions have reached at these locations. 
This observation is consistent with the observations that 
tension cracks developed around the crest of sliding mass [14], 
and is also consistent with the progressive failure mechanism 
proposed by Bjerrum [15], in the sense that a stress re-
distribution along the potential failure surface propagates from 
the slope toe due to overstressing at the slope toe. In the 
present study, it is shown that a critical condition occurs at 
slope toe because of a combined effect of high groundwater 
table and low overburden pressure. It is important to note that 
the use of displacement-based safety factors, FDi, is more 
advantageous than the use of stress-based FSi, in the sense 
that the difference of FDi between the pre-rainfall and post-
rainfall cases is larger than that for FSi. This allows a more 
detailed investigation of the safety status of the slope than that 
based on the distribution of FSi. Figure 9b shows the effect of ψ 
on the calculated values of FSi and FDi by using input conditions 
identical to those used in figure 9a, except that ψ=12.5° (=ϕ/2) 
is used for figure 9b. Differences between figures 9a and 9b can 
be hardly seen, indicating that input values of ψ have a 
negligible influence on the outcomes of FSi and FDi. Figure 10a 
shows calculated values of shear displacement (∆i) and 
horizontal displacement ( )[ ]ψα −⋅∆= ii cos  along the slip surface 
for the same case shown in figure 10a. Shear displacements at 
close-to-crest locations are larger than those at close-to-toe. It 
can be seen that horizontal shear displacements along the 
entire slip surface are identical, reflecting the basic assumption 
of the proposed methodology, namely, a rigid body with no 
lateral compressive deformation of the slice. In the future, 
lateral compressions of slices can be incorporated in the 
proposed method to simulate the behavior of a laterally 
compressed sliding mass. Figure 10b shows an otherwise 
similar plot to figure 10a, except that ψ=12.5° is used in figure 
10b. The influence of on the patterns of displacement along 
the failure surface is significant. By using a non-zero value of 
ψ=12.5°, the assumption of a rigid body becomes invalid, and 
the pattern of shear displacement mimics that of f(αi), as shown 
in figure 11. The non-rigid displacement behavior shown in 
figure 10b reveals another advantage of the proposed method, 
in the sense that various displacement patterns of the sliding 
mass can be simulated via the input value of ψ which dictates 
the shape of the displacement compatibility function f(αi).
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Figure 8. Calculated shear displacements based on (a) Hyperbolic 
soil model; (b) Linearly elastic soil model.

Figure 9. Local stress-based and displacement-based safety factors 
for ( ) 0 (b) 12.5a ψ ψ= ° = °¡ F

Figure 10. Shear displacements calculated using new displacement-
based slice method for ( ) 0 (b) 12.5a ψ ψ= ° = °¡ F

Figure 11. Variations of f(αi) induced by various values of ψ for the 
studied slope.

Figure 12a shows typical examples of mobilized shear 
and effective normal forces along the sliding surface based 
on identical soil parameters for figures 9a and 10a. 
Distributions of inσ ′

 
and τi generally show good trend of 

internal stress distributions, in the sense that normal stresses 
along the failure surface increase with the increase of the 
depth of failure surface. This trend is consistent with previous 
studies on the internal stress along the failure surface [16,17]. 
Increases of inσ ′

 
and τi induced by the rainfall (or the water 

table rise) are highlighted in figure 12b. Reductions in inσ ′ , 
associated with increases of τi along a major part of the sliding 
surface can be seen. In figure 12b, a normal stress reduction 
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of 20 kPa prevails along the major portion of slip surface. 
Increases of shear stress are insignificant for a major portion 
of slip surface. At close-to-toe and close-to-crest locations 
where the values of FSi have reached the critical condition 
(=1.0), the slope experienced certain degrees of shear stress 
reductions, due to the stress re-distribution mechanism [18-20].

Figure 12. Stress distribution on the failure surface for 0ψ = °: (a) 
Normal and shear stresses, (b) Stress increments.

Conclusions
A novel improvement of a conventional slice method of 

slope stability is proposed here, providing significant information 
regarding the displacement of the slope subjected to internal 
and/or external environmental changes. The proposed method 
satisfies force and moment equilibrium criteria adopted in the 
original slice method, with additional displacement compatibility 
requirement and a hyperbolic shear stress-displacement soil 
model. A new static determinate system was attained by 
introducing displacement compatibility functions and a 
hyperbolic shear stress-displacement model for the Fellenius’ 
method. As a result, local displacement-based and stress-based 
safety factors along the potential failure surface are parts of the 
analytical solution. Based on the case study of a well-monitored 
slope during a rainstorm, the effect of groundwater table rise 
during the rainstorm, expressed as an incremental slope 

displacement, was computed using the proposed method. It 
was shown that the slope displacement measured during the 
focused rainstorm can be closely simulated using stress vs. 
displacement relationships obtained from a large-scale direct 
shear test, revealing the potential of the present method for 
further applications.
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