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Abstract
This review article discusses the link between food technology and functional foods 

development. A special focus is put on the benefits of whole grain intake in human 
nutrition for diabetes people. An indication for buckwheat-based products is provided 
with focus on the antioxidative and inhibitory activity against formation of advanced 
glycation end products.
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Food Technology and Functional Foods
Food technology is a discipline of food science. More appropriately it is a 

multidisciplinary subject including food engineering, food manufacturing, food 
processing, food packaging, and food preservation. The food technologists study the 
chemical, physical and microbiological makeup of the food. From the food technology 
there is an easy step towards functional food development. A functional food is a food 
given an additional function (often one related to health-promotion or disease 
prevention) by adding new ingredients or more of existing ingredients. Functional food 
is a natural or processed food that contains known biologically-active compounds 
which when in defined quantitative and qualitative amounts provides a clinically proven 
and documented health benefit, and thus, an important source in the prevention, 
management and treatment of chronic diseases of the modern age”. Functional is 
defined as “natural or processed foods that contain known or unknown biologically-
active compounds; the foods, in defined, effective, and non-toxic amounts, provided a 
clinically proven and documented health benefits for the prevention, management, or 
treatment of chronic diseases. According to the United States Department of Agriculture- 
Agricultural Research Service (USDA–ARS), functional foods are “designed to have 
physiological benefits and/or reduce the risk of chronic disease beyond basic nutritional 
functions, and may be similar in appearance to conventional food and consumed as part 
of a regular diet”.

Focus on Hyperglycaemia
Nowadays, diabetes mellitus is a disorder characterized by hyperglycaemia due to an 

absolute or relative deficiency of insulin and or insulin resistance. It affects 1–2% of the 
population worldwide. Type 2 diabetes (T2D) is currently one of the major causes of 
morbidity and mortality in Europe [1]. Hyperglycaemia has an important role in the 
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pathogenesis of long-term complications and diabetic patients 
with poor blood glucose control are particularly at risk. 
Furthermore, complications appear to affect organs where cells 
do not require insulin for glucose uptake, such as those of the 
nervous system, heart, kidneys and small blood vessels. As a 
consequence, these cells have high concentrations of 
intracellular glucose during hyperglycaemia. The precise role of 
hyperglycaemia in the pathogenesis of long-term complications 
is still unclear. However, an attractive hypothesis and one that 
has received considerable interest is the role of protein glycation 
and formation of advanced glycation end products (AGEs). 
Protein glycation in humans is believed to be implicated in the 
development of chronic degenerative diseases due to the 
modification of proteins with carbohydrate-and lipid-derived 
intermediates resulting in changes of the functional properties 
of proteins, lipids and DNA [2]. In long-lived tissue proteins, 
these chemical modifications accumulate with age and may 
contribute to the pathophysiology of aging and long-term 
complications of diabetes, atherosclerosis, renal failure and 
Alzheimer disease [3-5]. AGEs formation is increased in 
hyperglycemia and under the influence of oxidative stress [6]. 
Increased glycation and build-up of tissue AGEs have been 
implicated in diabetic complications because they can alter 
enzymic activity, decrease ligand binding, modify protein half-
life and alter immunogenicity [4]. Glycation-derived free radicals 
can cause protein fragmentation and oxidation of nucleic acids 
and lipids. The amino groups of adenine and guanine bases in 
DNA are also susceptible to glycation and AGEs formation, 
probably by reactive intracellular sugars [7]. AGEs could also 
form on phospholipids and induce lipid peroxidation by a direct 
reaction between glucose and amino groups on phospholipids 
such as phosphatidylethanolamine and phosphatidylserine 
residues [8]. Antioxidants can protect against glycation derived 
free radicals and may have therapeutic potential whereas 
transport proteins, for example, caeruloplasmin can bind 
transition metals such as cupric ions, preventing them from 
participating in autoxidative glycation or glycoxidation reactions. 
However, the efficiency of these natural defences against 
glycation and AGEs in vivo is unknown. Antioxidants protect 
against glycation-derived free radicals and may have therapeutic 
potential. Vitamin E (800 mg per day) has been shown to reduce 
levels of glycated haemoglobin and accumulation of AGEs in 
the arterial walls of diabetic patients [9,10]

Diabetic Complications and Advanced 
Glycation End Products (AGEs)

Despite the fact that there are many concepts regarding 
the processes leading to development of diabetic 
complications, investigations still focus on the role of 
advanced glycation end products (AGEs) in pathogenesis of 
late diabetic complications. Diabetic retinopathy is the most 
common cause of blindness and characterized by increased 
proliferation of blood vessels, vascular occlusion, angiogenesis, 
microaneurysms, haemorrhages and infarction affecting the 
retina of the eye. AGEs have been detected in retinal blood 
vessel walls and are believed to contribute towards vascular 

occlusion and increased permeability of retinal endothelial 
cells causing vascular leakage. Level of advanced glycation 
end products is correlated with early preclinical changes 
specific for diabetic nephropathy and retinopathy. Atherosclerosis 
is the most serious consequence of long-term diabetes and 
the major cause of death in these patients. It is characterized 
by deposition of atherosclerotic plaques on the insides of 
arterial walls, occlusion of blood flow and eventual myocardial 
infarction. Increased glycation of low-density lipoprotein 
(LDL) occurs in diabetes. Glycated LDL is not recognised by 
the LDL receptor but its uptake by macrophages is enhanced 
[11] and this may account, at least in part, for the 
hyperlipidaemia and accelerated foam cell formation 
observed in diabetic patients. Diabetic nephropathy is 
characterised by a thickening of the basement membrane, 
expansion of the mesangium, reduced filtration, albuminuria 
and ultimately renal failure. AGEs have been detected in renal 
tissues in amounts that correlate with the severity of diabetic 
nephropathy [8]. Diabetic neuropathy may present clinically 
as pain or numbness of limbs or as impotence in men. There 
is increased glycation of myelin in diabetes. The body has 
mechanisms to protect against glycation and AGEs such as 
the liver enzyme, aketogluteraldehyde dehydrogenase 
capable of inactivating 3-DG and preventing AGE formation 
[12].

A key aim of therapy in diabetic patients is to reduce 
hyperglycaemia and one of the important tools to achieve it is 
modification of the diet. There is growing interest in natural 
products with combined anti-glycation and antioxidant 
properties as they may have reduced T2D risk at higher intake. 
The investigation of AGEs formation inhibitors has received 
much attention. Indeed, a number of plant derived flavonoids 
(quercetin, rutin and kaempferol) with antioxidant activity 
have been reported to inhibit glycation, at least in vitro [8]. 
Natural inhibitors have been proven relatively safer for human 
consumption when compared with synthetic compounds 
[13]. There have been reports on the inhibitory activities of 
some phenolic compounds [14,15], colon derived polyphenol 
catabolites [16-19], extracts from microalgae [20], herbs 
[13,21,22], mung bean [15], aged garlic [23], wheat bran 
feruloyl oligosaccharides [24], coffee fractions [18], fermented 
byproducts [25] and buckwheat hull tea infusion [26] against 
AGEs formation. 

The Benefits of Whole Grain intake in 
the Prevention of Type 2 Diabetes

Of interest in this respect is that epidemiological studies 
have linked products based on the whole grain (WG) intake to 
the prevention of T2D [27-29] [22,39,46]. Meta-analyses of 
prospective cohort studies during the last few years indicate 
substantial reduction in T2D risk at higher intake of products 
based on the whole grain (WG) [30]. Still, limited data are 
available from controlled dietary interventions. Intervention 
studies with WG diets have, however, reported benefits on 
glucose metabolism as manifested through lowered fasting 
glucose [31], lowered fasting insulin or lowered acute insulin 
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and glucose responses [32,33]. Lowered postprandial 
glycaemia in response to certain WG cereal products, or 
suppressed insulin responses in the case of rye, might also 
contribute to metabolic benefits of a WG diet [34-36]. Over 
the last few years there the postprandial glycaemia and 
insulinaemia to wheat and rye products were mainly 
investigated due to the an increasing awareness of their 
importance on T2D and metabolic disease risk. Indications are 
also available suggesting improved insulin secretion with 
diets included with WG rye bread compared with a control 
diet with refined wheat bread [37]. Furthermore, in a study 
where the dietary modification was made by altering the 
characteristics of the bread products only, it was concluded 
that exchanging high glycemic index (GI) low dietary fibre 
(DF) bread for low GI high DF bread during 4 weeks beneficially 
affected insulin economy in young women at risk of 
developing T2D [38]. Other studies have failed to show any 
effect on glucose metabolism [39-41]. Little information is 
available regarding the impact on emerging risk markers such 
as oxidative and carbonyl stress and low-grade inflammation. 
According to Katcher et al. [41] a WG diet lowered C-Reactive 
Protein (CRP) and Mateo Anson et al. [42] showed postprandial 
anti-inflammatory effects of WG wheat bread in an ex vivo 
induced inflammation; whereas in the intervention by 
Andersson et al. [39] and Brownlee et al. [40], inflammatory 
markers remained unaffected. Although the majority of 
intervention studies indicate benefits on risk markers of 
relevance for developing T2D, effects on individual risk 
markers in various studies are inconsistent. Differences in the 
metabolic characteristics of the test subjects, may of course 
have contributed to this. Also, the different studies have 
included different cereals. Most of the intervention studies 
have addressed wheat (or rather mixed cereals, in which 
wheat dominate), but in some studies WG barley, rye or rice 
products have been included with favorable outcome on 
metabolic risk markers. Although a range of potential 
mechanisms have been put forward related to the presence 
of phytochemicals, antioxidants and trace minerals, essential 
knowledge concerning the bioavailability of such components 
in products from different WG cereals is scarce.

Currently, frequent post-meal hyperglycaemic episodes 
are considered to promote oxidative stress and induce low-
grade inflammation thereby contributing to endothelial 
damage and T2D [43]. This knowledge provides a possible 
explanation for the increased risk of CVD seen in T2D [44]. 
Similarly to the epidemiological evidences of a protective role 
of a higher WG intake, also low GI diets have been associated 
with lowered risk factors for T2D and CVD, as well as lowered 
risk of disease [45]. In consequence, low GI characteristics of 
WG foods are frequently mentioned as a feature contributing 
to the health value of WG diets. Moreover, studies with rye 
products have also indicated that rye favours a postprandial 
glycaemic profile with a low and sustained glucose increment, 
and that a measure of the course of glycaemia (Glycaemic 
Profile, GP; calculated as the duration of net increment in 
blood glucose/peak glucose; min/mM) better predicted the 
insulin response. In addition, a higher GP is associated with 

higher satiety in the late postprandial phase, and a lower 
voluntary food intake at a subsequent meal [35,36]. Up till 
now, there is some only a scare evidences on the effect of 
wheat and barley diets on insulin sensitivity and metabolic 
variables in patients with T2D (Frid et al., unpublished results). 
Fifty-eight patients with diabetes type 2, divided into 4 groups, 
participated in the intervention dietary studies. They received: 
(1) refined wheat bread (High GI, low WG); (2) whole meal 
wheat bread (High GI, high WG); (3) Kernel based WG wheat 
bread (Low GI, high WG) and (4) kernel based barley bread 
(Low GI, high WG).The patients were treated with life-style 
intervention, and did not receive pharmacological treatment. 
Primary end-point was insulin first-phase response and insulin 
sensitivity, measured using the Glucagon Insulin Tolerance 
Test (GITT) [46]. Secondary end-points were HbA1c, fasting 
plasma glucose, HDL, LDL, TG, ApoA, ApoB, PAI-1 and high 
sensitivity (hsCRP). All measures were performed at the 
beginning and end of each diet period. No differences were 
seen in any of the above parameters over the diets with refined 
wheat bread, whole meal wheat bread or kernel based wheat 
bread, suggesting that the increase in wheat fibre and or 
lowering of GI in the case of the kernel based wheat product 
was not capable of affecting metabolic control in these 
patients. In contrast, dietary enclosure of the low GI, WG kernel 
based barley bread significantly improved insulin sensitivity as 
measured with the GITT. No significant effects were seen on 
other risk markers analysed. The absence of effects on GITT in 
the case of the diet enclosed with the corresponding low GI 
kernel based wheat bread, may indicate that the specific 
combination of dietary fibre and RS in the barley kernel bread 
promote benefits on insulin sensitivity through a mechanism 
involving colonic fermentation. Evidence for such a mechanism 
has been reported in semiacute experiments in healthy 
subjects fed this type of kernel based barley bread, whereas a 
kernel based wheat bread was devoid of benefits [47]. 

Results with WG barley kernel products indicate benefits 
on glucose tolerance mediated through colonic fermentation 
of indigestible carbohydrates. Whole grain product constituents 
may be metabolized by the gut microbiota, which need to be 
considered when evaluating mechanisms for potential effects 
of WG on metabolic risk markers of T2D. Major colonic 
substrates are cereal fibre, but also resistant starch (RS). Studies 
in humans have also linked enhanced SCFA production, and 
butyrate in particular, to improved insulin sensitivity and 
glucose homeostasis [47-49]. Additionally, also other grain 
components such as e.g. phenolics may enter the large bowel, 
and be subjected to microbial metabolism [50]. Only part of 
phytochemicals ingested with food is absorbed. Phytochemicals 
which were not absorbed in the upper part of the gastrointestinal 
tract and these which underwent detoxification process in liver 
and were returned to the small intestine with bile reach the 
large intestine where they are modified by microbiota [50]. 
Therefore, profile, number of, and activity of microbiota in the 
gastrointestinal tract has a huge impact on human metabolomic 
profile which may in part have an impact on the health status 
of humans. Food ingredients which were undigested and 
unabsorbed in the upper sections of digestive tract reach the 
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colon, there are transformed, providing a source of carbon and 
energy for bacteria, but they may also exhibit stimulatory or 
inhibitory effect on bacteria. The colonic microbiota shows 
diverse deglycosylation activities, thus releasing aglycones that 
are rapidly degraded to produce simpler phenolic [51,52]. 
Degradation of flavonoid aglycones involves C-ring cleavage 
and reactions affecting functional groups, such as 
dehydroxylation, demethylation or decarboxylation [52]. The 
metabolic activity of the gut microflora on polyphenols is often 
responsible for the modulation of the biological activity of 
these dietary compounds and their potential health effects 
[19]. Some studies have been published regarding the activity 
of conjugated metabolites of quercetin [53,54]. Metabolites of 
bacteria influence on other bacteria, stimulating or inhibiting 
their growth as well as on host intestinal epithelial cells affecting 
the permeability of the gut and immune system. Food 
components reaching the colon are one of the main factors 
directly influencing microbiota of this part of digestive. A well-
balanced and varied diet ensures that the dynamic equilibrium 
of the intestinal microbiota is “resistant” to the long-term 
disorder. Proper development and functioning of the digestive 
system and the host organism is provided by a properly shaped 
and stable microbiota. Further study require the processes 
occurring in the “healthy” intestine, in which constituents of a 
diet, including phytochemicals, may undergo changes under 
the influence of gut microbiota, and then be absorbed into a 
host organism, where they can possess specific biological 
functions. The area associated with changes of phytochemicals 
in large intestine, including buckwheat phytochemical 
originating from the diet, requires in-depth research. The 
complexity of interactions between bacteria as well as the host 
organism and microbiota with taking into account the impact 
of dietary components, makes the study of dietary components 
transformation occurring in the gut with the involvement of 
bacteria, it becomes crucial to the full understanding of the 
micro system functioning of large intestine. Up till now, the 
colonic availability of ferulic acid and its specific colonic 
metabolites derived from whole wheat grain products ingestion 
remains to be elucidated [55].

Buckwheat-based products in the prevention of type 2 
diabetes

There are limited publications which have indicated the 
potential use of buckwheat as a source of natural products with 
combined anti-glycation and antioxidant properties [56,57]. In 
Europe and North America, buckwheat (Fagopyrum esculentum 
Moench) is considered as a high nutritional value pseudo-cereal 
due to its balanced amino acid composition and high contents 
of vitamin B1 and B2, lysine, flavonoids, phenolic acids, 
tocopherols, phytosterols, soluble carbohydrates, D-chiro-
inositol, fagopyritols, thiamin-binding proteins and flavone 
C-glucosides [56,58-60]. Compared to most fruits, vegetables 
and grain crops, buckwheat contains more rutin (quercetin 3–
rutinoside), a highly potent flavonol glucoside with antioxidant, 
anti-inflammmatory, anticarcinogenic [61] and antiglycative 
properties [8,15-17,62]. Orientin and homoorientin, a pair of 
isomeric compounds, and their 4’-deoxy analoques, namely 

vitexin and isovitexin are the main flavone C-glucosides present 
in buckwheat grain [63]. Various biological and pharmacological 
activities have been attributed to these compounds, such as 
hypotensive, anti-inflammatory, antispasmodic [64], antioxidant/
free radical scavenging [65,66], radioprotective effects [67] and 
anti-glycation activities [68-70]. Recently, vitexin and isovitexin in 
the bovine serum albumin (BSA) - glucose system showed strong 
inhibitory effects on the formation of fluorescent advanced 
glycation endproducts (AGEs), comparable to that of rutin, one 
of the most potent natural AGE inhibitors suggesting that their 
anti-glycation activities may mainly be due to their radical 
scavenging capacity [15]. D-Chiro-inositol is an inositol isomer 
that occurs in relatively high levels in buckwheat seeds [71]. 
Chemically synthesized D-chiro-inositol has lowered elevated 
plasma glucose in insulin-resistant monkeys, streptozotocin-
treated hyperglycaemic rats, and normal rats after administration 
intravenously or orally [72,73]. Administering doses of 10 and 20 
mg of D-chiro-inositol in the form of natural buckwheat 
concentrate decreased serum glucose concentrations by 12-
19% in streptozotocin-diabetic rats, however, further studies of 
the effect of D-chiro-inositol on humans are needed [74]. 
Recently it has been reported that D-chiro-inositol enriched 
tartary buckwheat bran extract lowered the blood glucose level 
in mice, confirming the beneficial effect of this compound by 
improving glucose tolerance and insulin response to glucose 
metabolism without affecting body weight [75]. Having all these 
evidences, buckwheat based-products were found to display 
various biological activities, including increasing number of lactic 
acid bacteria in rat intestine, lowering effect on serum glucose 
concentration in diabetic rats, treatment of allergic inflammation, 
suppressing cholesterol level, inhibiting protease and scavenging 
free radicals [74,76,77] [57,34,33]. Among buckwheat based 
products, extremely interesting seems to be buckwheat enriched 
dark wheat breads as it is based on whole meal wheat flour and 
buckwheat flour from milled groats. Because the inhibitory 
activities of wheat bran feruloyl oligosaccharides have been 
found to inhibit the formation of AGEs, and their inhibition of 
free radical generation in the glycation process has been 
considered as the major mechanism of their anti-glycation 
activities mediation [24]. Moreover, the recent evidences have 
indicated that the consumption of buckwheat enhanced wheat 
bread caused a positive increase of serum antioxidant capacity in 
humans [78]. These finding, supported by quality and antioxidant 
property of buckwheat enhanced wheat bread provided by Lin 
[79], makes buckwheat enhanced wheat bread an attractive 
product for long term dietary interventions in ‘at risk’ subjects 
and in subjects with T2D. The role of diet in shaping metabolomic 
profile is not fully elucidated. It is clear that diet have both an 
acute and chronic effect. Understanding the chronic effects of 
diet is the most relevant in the terms of nutrition research, and in 
the terms of the interpretation of food metabolomics data, and 
the effect on the human body. Previous research on food 
metabolomics showed, that in addition to exogenous 
compounds discriminating diet rich and poor in the test product 
or group of products in biological fluids of volunteers, is changed 
the level of endogenous substances. It was observed an increase 
level of creatinine, creatine, trimethylamine N-oxide, taurine, and 
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1 - and 3-methylhystidine in the urine of persons who were on a 
diet with a higher content of meat, and increase the level of 
p-hydroxyphenylacetate derivatives in subjects with a diet 
without meat but a high amount of fruit and vegetables [80]. 
Similarly, the study of Walsh [81] showed that a diet with low 
phytochemicals concentration resulted in elevated levels of 
creatinine and metylohistydyny in urine of volunteers while the 
diet with high content of phytochemicals resulted in increased 
levels of hippuric acid derivatives. Very often compounds 
resulting from the activities of the colon microbiota are markers 
of consumption of plant origin products. Llorach [82] study 
showed that after ingestion of almonds in the urine of volunteers 
are present metabolic products of gastrointestinal microbiota, 
derivatives of hydroxyphenylacetic, hydroxyphenylpropionic, 
and hydroxyphenylvaleric acid. In other studies, after cocoa 
consumption in the urine of volunteers’ derivatives of 
dihydrophenylvalerolactone was detected [82]. All of these 
issues point to the necessity of conducting research related to 
the food metabolomics including research on the effects of 
regular consumption of buckwheat products on the human 
metabolome, the formation of biomarkers intake and plasma 
antioxidant capacity of consumers. 

Conclusion
In conclusion, we suggest that regular consumption of 

whole grain products with the participation of buckwheat can 
lead to significant changes in the metabolome of consumers 
which may be relevant in the context of the prevention of 
diabetes type 2 as well as its chronic complications.
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